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STARTING POINTS ■ In scientific investigations, observations are recorded as data (singular, datum). There

are different forms of data, but they are all potentially useful. No one type of data that
is relevant to an enquiry is necessarily superior to any other type, provided the data have
been accurately made and recorded.   

■ We can define the types of data we collect as:
qualitative (or descriptive) observations such as, in behaviour studies, the feeding
mechanism of honey bees visiting flowers (Figure 17.13, page 523) or nesting behaviour
of a species of bird. Qualitative data may be recorded in written observations or notes,
or by photography or drawings
quantitative (or numerical) observations such as the size (numbers, length, breadth
or area) of an organism, or of organs such as the leaves of a plant in shaded and
exposed positions, or the pH values of soil samples in different positions (Figure 19.20,
page 621).

■ Quantitative data may be discrete or continuous:  
discrete data are whole numbers, such as the number of eggs laid in a nest – no nest
ever contains 2.5 eggs! 
continuous data can be any values within some broad limit, such as the heights of the
individuals of a population. 

■ In this chapter, a means of representing the variability of graphical data is illustrated,
and statistical tests are examined. These concern the calculation of means and of
standard deviation, and discussion of their usefulness, followed by application of the
t-test. 

Statistics 

■ Recording variability of data – error bars 1.1.1

In experimental science, the outcomes of investigations are checked to confirm they are
reproducible. So, for example, when a leading laboratory makes an important discovery and
publishes results in a paper, details of the experimental methods are given so that others may
repeat the work. Incidentally, if other laboratories fail to confirm the results, then a controversy
breaks out. The results are not accepted. Subsequent investigations on both sides of the ensuing
argument eventually lead to a resolution of the difference. 

Most often, initial results are confirmed because investigations are repeated several times, at
the outset, before results are published. 

In particular experiments that are part of your course, time may sometimes be too limited for
you to repeat readings as you might wish. However, groups of fellow students carrying out the
same experiment may be able to pool results. If so, then you may be able to see how variable or
consistent a particular result is. So when you display data as part of your record of an
investigation, using a graph for example, you can record the degree of variability in readings that
the student group obtained in total. To do this you use error bars.

An example of error bars in use
A preliminary investigation of the effect of aerobic and anaerobic pre-treatment of tissue discs
on their subsequent gain in mass is shown in Figure 21.1. Thin discs of plant tissue are often used
because this technique allows all the cells in a sample to receive more or less identical
conditions. (You can see the use of leaf tissue discs in an experiment in Figure 15.5, page 451.)



The results of this enquiry indicate that
anaerobic pre-treatment leads to subsequent
gain in mass, whereas aerobic pre-treatment
leads to loss in mass. This experiment was
based on five batches of ten discs for both
treatments, and the variability of the results is
recorded in error bars. Each error bar indicates
the range of values (readings) from the highest
to the lowest. In Figure 21.1, for example, the
error bars draw attention to the much greater
variation in results from aerobically pre-treated
tissue.

Sometimes, the error bars shown in a
graphical representation of data record
variability as the standard deviation of a result.
The calculation of standard deviations is
discussed shortly.
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■ Summarising data – the mean
Points on the curves in the graph in Figure 21.1 are based on five tissue batches (each of ten
tissue discs) for each treatment. The value of each is the average or arithmetic mean value of
individual batches. The value of means is that they convey the ‘middleness’ of the data.

How are the averages or means of the readings calculated? 
To calculate a mean value, all the values from a particular treatment or observation are

summed, and the total divided by the number of these values. 
The formula for the arithmetic mean is:

x = Σx
n

where
x  = arithmetic mean
Σx = sum of all the measurements
n  = the total number of measurements

The value of means in other experimental situations
For example, let us imagine you have completed an investigation on the effects of the
application of pesticide on the numbers of a common species of soil organism.

The outcome is that your field notebook now contains a large number of counts from
randomly placed quadrats (page 601), some from treated soils, and some from untreated soil (see
table in Figure 21.2).

In Figure 21.2, the data are also presented graphically, with the number of worms per quadrat
on the x-axis, and the frequency of quadrats with each number of worms on the y-axis. 

Look at the spread of data from both treatments.
With these data presented as a graph, two characteristic bell-shaped curves result (which only

slightly overlap).  These are referred to as normal distributions. These arise, given a large
enough number of observations or measurements, if the data may have an exactly symmetrical
spread. However, data rarely exactly conform completely to a bell-shaped curve – an
approximation is usual, given a finite number of observations. This is what we see in Figure 21.2.
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How can the data best be summarised so that a comparison of the effect of the alternative treatments
can be made? 
The answer is in different ways, one of which is to find the mean value of soil worms for each

treatment. To do this, all the values from quadrats on treated soil are summed, and the total
divided by the number of values. In this way, we have an average value for the effect of this soil
treatment. The mean will convey the ‘middleness’ of the data. The counts from quadrats on
untreated soil are treated in the same way too, of course. You could calculate the means for the data
in Figure 21.2, for both treated soil and untreated soil.
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■ Extension: Mean, median and mode
In the handling of experimental data, you may come across two other terms, namely mode and
median. These are not alternatives to the mean value; rather they have different meanings:

■ mode is the most frequent value in a set of values;
■ median is the middle value in a set of values arranged in ascending order.

The graphs in Figure 21.3 illustrate how mean, mode and median relate in a normal
distribution and in skewed data. You can see that it is in skewed data that they have particular
significance.

Normal distribution curve

Most biological data shows 
variability, but with values grouped 
symmetrically around a central value.

Here the mode, median
and mean coincide.

Skewed distribution

Values reduce in frequency more 
rapidly on one side of the most 
frequently obtained value than
the other.

Here the difference between the 
mean and mode is a measurement 
of ‘skewness’ of the data.

mode
median
mean

mean

median

mode

Figure 21.3 Frequency
distributions of

symmetrical and skewed
data
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■ Calculating standard deviations 1.1.2–1.1.4

The standard deviation (SD, s or σ) of the mean tells us how spread out are the readings (the
‘spreadoutness’ of the data).

A small standard deviation indicates that the data is clustered closely around the mean value. 
A large standard deviation indicates a wider spread around the mean.

So, standard deviations are a measure of the variation in the data from the mean value of a set
of values. 

The five steps to calculating the standard deviation of a data set are:
1 Calculate the mean (x)
2 Measure the deviations (x − x)
3 Square the deviations (x − x)2

4 Add the squared deviations ∑(x − x)2 

5 Divide by the number of samples (n). 

Calculating standard deviations – an example
An ecologist investigated the reproductive capacity of two species of buttercup, Ranunculus acris
(meadow buttercup) and R. repens (creeping buttercup). 

The latter species spreads vegetatively via strong and
persistent underground stems. Would this investment be
reflected in a lowered production of fruit (the product of
sexual reproduction) compared with fruit production by
the meadow buttercup, which reproduces more or less
exclusively by sexual reproduction?

Using comparable sized plants growing under similar
conditions in the same soil, the numbers of achenes
(fruits) formed in 100 flowers of each species were
counted and recorded. The results are given in 
Figure 21.4, and calculations of the SDs are shown in
Figure 21.5. Note that you are not expected to know the
formula for calculating SD. The purpose of presenting the
steps to the calculation is to take away the mystery of a
calculation normally carried out by a scientific calculator
or programmed spreadsheet.

Figure 21.4 Data on
achene (fruit) production

in two species of
Ranunculus
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Alternative methods of calculating means and SDs
Rather than carry out all these steps manually – for example, using a dedicated worksheet as in
Figure 21.5 – the value of the standard deviation may be obtained using a scientific or statistics
calculator, or by means of a spreadsheet incorporating formulae, or by using Merlin (page 683).

Using a scientific calculator or spreadsheet, you can calculate the SDs of both the data of frequencies
of worms on quadrats on soil treated with pesticide and on untreated soils, at this point, if you wish.
Once obtained, the value may be applied to the normal distribution curve, as shown in Figure
21.6. Note that 68% of the data occurs within ± 1 SD, and more than 95% of the data occurs
within ± 2 SDs.
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The value of calculating standard deviation
We have noted that a standard deviation of low value indicates that the observation differs very
little from the mean, and that high values of SD indicate a wider spread around the mean. 

Thus the SDs can be used to help to decide whether the differences between the two related
means are significant or not, such as those shown in Figure 21.2 (page 677). 

If the SDs are much larger than the difference between the means, then the differences in the
means are highly unlikely to be significant. 

On the other hand, when SDs are much smaller than the differences between the means, then
the differences between the means is almost certainly significant.
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Figure 21.5 Calculating
the means and SDs of the

data in Figure 21.4



■ Another statistical test – the t-test 1.1.5

Statistical tests typically compare large, randomly selected representative samples of normally
distributed data. In practice, it is often the case that data can only be obtained from quite small
samples. The t-test may be applied to sample sizes of more than 5 and less than 30 of normally
distributed data. It provides a way of measuring the overlap between two sets of data – a large
value of t indicates little overlap and makes it highly likely there is a significant difference
between the two data sets. An example will illustrate the method. However, you should note
that you are not expected to calculate values of t.

Applying the t-test
An ecologist was investigating woodland microhabitats, contrasting the communities in a shaded
position with those in full sunlight. One of the plants was ivy (Hedera helix), but relatively few
occurred at the locations under investigation. The issue arose: were the leaves in the shade
actually larger than those in the sunlight?

Leaf widths were measured, but because the size of the leaves varied with the position on the
plant, only the fourth leaf from each stem tip was measured. The results from the plants available
are shown in Table 21.1.

Size-class/mm Leaves in sunlight (a) Leaves in shade (b)

20–24 24

25–29 26, 26 26

30–34 30, 31, 31, 32, 32, 33 33, 34

35–39 37, 38 35, 35, 36, 36, 36, 37

40–44 43 41, 42

45–49 45
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95%

2 SD 2 SD

Figure 21.6 The normal
distribution and its SD

Table 21.1 Sizes of sun
and shade leaves of

Hedera helix



Steps to the t-test
1 The null hypothesis (negative hypothesis) assumes the difference under investigation has

arisen by chance. In this example, the null hypothesis is:
‘There is no difference in size between leaves in sunlight and leaves in shade.’
The role of the t-test is to determine whether to accept or reject the null hypothesis. If it is
rejected here, we can have confidence that the difference in the leaf sizes of the two samples is
statistically significant.

2 Next, check that the data are normally distributed. This is done by arranging the data for
leaves in sunlight and leaves in shade as in Table 21.1 (and plot a histogram, if necessary).

3 You are not expected to calculate values of t. This statistic can be found by using a scientific or
statistics calculator, or by means of a spreadsheet incorporating formulae. 

Actually, a formula for the t-test for unmatched samples (data sets a and b) is:

t =
xa − xb

sa
2

+
sb

2

na nb
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■ Extension: Merlin – statistical software available to biology students
Merlin is a statistical package produced by Dr Neil Millar of Heckmondwike Grammar School,
UK. This software is an add-in for Microsoft Excel and is easy to use. Merlin is available free of
charge for educational and non-profit use. The package may be copied to laboratory and student
computers from the school’s website, currently at
www.heckgrammar.kirklees.sch.uk/index.php?p=310

URLs do change periodically. Merlin can also be located by means of a Google search under
‘merlin+statistics’. 

Once you have data from laboratory or field investigations, Merlin can be used to carry out a
statistical test. There are no calculations required, and no look-up tables – no maths, no
mistakes, in effect! Merlin also includes a basic introduction to statistics for biology students
and a ‘test chooser’. Here, in answer to a series of questions, Merlin selects the right test. Also
with Merlin, Excel can display data in a range of graphs and charts, as appropriate.

where
xa = mean of data set a
xb = mean of data set b
sa

2 = standard deviation for data set a, squared 
sb

2 = standard deviation for data set b, squared
na = number of data in set a
nb = number of data in set b

√ = square root of

4 Once a value of t has been calculated (here t = 2.10), we determine the degrees of freedom
(df) for the two samples, using the formula:
df = (total number of values in both samples) − 2

= (na + nb) − 2
In this case:
df = (12 + 12) − 2 = 22.
Now we consult a table of critical values for the t-test.

5 A table of critical values for the t-test is given in Figure 21.7. Look down the column of
significance levels (p) at the 0.05 level until you reach the line corresponding to df = 22. You
will see that here, p = 2.08.

6 Since the calculated value of t (2.10) exceeds this critical value (2.08) at the 0.05 level of
significance, it indicates that there is a lower than 0.05 probability (5%) that the difference
between the two means is solely due to chance. Therefore, we can reject the null hypothesis,
and conclude the difference between the two samples is significant.

For the experimenter, the significance of all this, is that there is a reason for the difference in the
means, which can now be further investigated and fresh hypotheses proposed.
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■ Correlations do not establish causal
relationships 1.1.6

By ‘correlation’ we mean ‘a mutual relation between two (or more) things’, or ‘an
interdependence of variable quantities’. The belief that because things have occurred together,
one must be connected or related to the other in the sense that one is the cause of the other is
an easily and commonly made mistake. Because two events (A and B) regularly occur together,
it may appear to us that A causes B. This is not necessarily the case. In fact, there may be a
common event that causes both, for example, or it may be an entirely spurious correlation. For
example, some infants (very few) develop the symptoms of autism shortly after the normal time
in childhood when the MMR inoculation is administered. Some parents of autistic children who
had arranged for their child to be inoculated came to blame the vaccination for the child’s
condition. This confusion caught on for several years, many parents became anxious, and the
practice of having the triple injection became unpopular. The numbers of vaccinated children
fell to dangerously low levels. It was some time before detailed studies could convince the



majority of parents that the two events, MMR inoculation and the onset of autism, were not
causally linked (page 360).

The fact that correlation does not prove cause was one of the reasons why Richard Doll’s
amassing of statistical evidence of a link between smoking and ill health was successfully resisted
by the tobacco industry for an exceptionally long time (page 666). Now we know the various
reasons why cigarette smoke triggers malfunctioning of body systems, ill heath and diseases of
various sorts.

So, having applied statistical tests that indicate the possibility of a correlation, we cannot then
assert that one event is the cause of the other. What we can do is have confidence that the
events may well be linked, and so go on to investigate the mechanisms of the linkage – if there is
one.

For example, a persistent condition of hypertension is directly linked to the raised incidence of
coronary heart disease and vascular accidents of other sorts (page 665). In this case, the
statistical relationship has been followed up, enabling us to understand why hypertension has
these effects. Once the connections between events or conditions are understood, the
relationship has been established. In other words, just because a correlation does not prove the
cause does not mean there cannot be a causal relationship.

So, statistical confidence in the possibility of a causal link is a springboard to further
investigation, not proof of a relationship.
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TOK Link
Is the idea of ‘cause and effect’ generally uncritically accepted? 

Does it permeate our culture?

Examine some current newspapers or journals that are frequently read in your country. Can you find examples of
assumptions about cause and effect that are stated, but which are unproved and possibly dubious?


